Part Number Hot Search : 
ARS3505 44H11 16200 0NPBF BTA06GP 8TXXX 926309 30010
Product Description
Full Text Search
 

To Download ISL28176 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 (R)
ISL28176, ISL28276, ISL28476
Data Sheet June 23, 2009 FN6301.4
Single, Dual and Quad Micropower Single Supply Rail-to-Rail Input and Output (RRIO) Precision Op Amp
The ISL28176, ISL28276 and ISL28476 are single, dual and quad channel micropower operational amplifiers optimized for single supply operation over the 2.4V to 5V range. They can be operated from one lithium cell or two Ni-Cd batteries. These devices feature an Input Range Enhancement Circuit (IREC) which enables them to maintain CMRR performance for input voltages 10% above the positive supply rail and down to the negative supply. The output operation is rail-to-rail. The ISL28276 and ISL28476 draw minimal supply current while meeting excellent DC-accuracy, AC-performance, noise and output drive specifications. The ISL28276 (QSOP package only) contains a power-down enable pin that reduces the power supply current to typically 4A in the disabled state.
Features
* Low power 120A typical supply current (ISL28276) * 100V maximum offset voltage * 500pA typical input bias current * 400kHz typical gain-bandwidth product * 115dB typical PSRR and CMRR * Single supply operation down to 2.4V * Input is capable of swinging above V+ and to V- (ground sensing) * Rail-to-rail input and output (RRIO) * Pb-free (RoHS compliant)
Applications
* Battery- or solar-powered systems * 4mA to 25mA current loops
Ordering Information
PART NUMBER (Note) ISL28176FBZ* ISL28276FBZ* ISL28276IAZ* ISL28476FAZ* PART MARKING 28176 FBZ 28276 FBZ 28276 IAZ 28476 FAZ PACKAGE (Pb-free) 8 Ld SOIC 8 Ld SOIC PKG. DWG. # MDP0027 MDP0027
* Handheld consumer products * Medical devices * Thermocouple amplifiers * Photodiode pre-amps * pH probe amplifiers
16 Ld QSOP MDP0040 16 Ld QSOP MDP0040
*Add "-T7" suffix for tape and reel. Please refer to TB347 for details on reel specifications. NOTE: These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright Intersil Americas Inc. 2006, 2007, 2009. All Rights Reserved All other trademarks mentioned are the property of their respective owners.
ISL28176, ISL28276, ISL28476 Pinouts
ISL28176 (8 LD SOIC) TOP VIEW
NC 1 IN-_A 2 IN+_A 3 V- 4 + 8 NC 7 V+ 6 OUT_A 5 NC NC 1 NC 2 OUT_A 3 + IN-_A 4 IN+_A 5 EN_A 6 V- 7 NC 8 +
ISL28276 (16 LD QSOP) TOP VIEW
16 NC 15 V+ 14 OUT_B 13 IN-_B 12 IN+_B 11 EN_B 10 NC 9 NC
ISL28276 (8 LD SOIC) TOP VIEW
OUT_A 1 + IN-_A 2 + IN+_A 3 V+ 4 IN+_B 5 IN-_B 6 OUT_B 7 NC 8 IN+_A 3 V- 4 8 V+ 7 OUT_B 6 IN-_B 5 IN+_B OUT_A 1 IN-_A 2
ISL28476 (16 LD QSOP) TOP VIEW
16 OUT_D 15 IN-_D + 14 IN+_D 13 V12 IN+_C + + 11 IN-_C 10 OUT_C 9 NC +
2
FN6301.4 June 23, 2009
ISL28176, ISL28276, ISL28476
Absolute Maximum Ratings (TA = +25C)
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5V Supply Turn On Voltage Slew Rate . . . . . . . . . . . . . . . . . . . . . 1V/s Differential Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5mA Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5V Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . V- - 0.5V to V+ + 0.5V ESD Rating Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3kV Machine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300V
Thermal Information
Thermal Resistance (Typical, Note 1) JA (C/W) 8 Ld SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . 125 16 Ld QSOP Package . . . . . . . . . . . . . . . . . . . . . . . 100 Output Short-Circuit Duration . . . . . . . . . . . . . . . . . . . . . . .Indefinite Ambient Operating Temperature Range . . . . . . . . .-40C to +125C Storage Temperature Range . . . . . . . . . . . . . . . . . .-65C to +150C Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . +150C Pb-free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . .see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.
NOTE: 1. JA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: TJ = TC = TA
Electrical Specifications
V+ = 5V, V- = 0V,VCM = 2.5V, RL = Open, TA = +25C unless otherwise specified. Boldface limits apply over the operating temperature range, -40C to +125C, temperature data established by characterization. DESCRIPTION CONDITIONS MIN (Note 2) TYP MAX (Note 2) UNIT
PARAMETER DC SPECIFICATIONS VOS
Input Offset Voltage
ISL28176 ISL28276 ISL28476
-100 -220 -100 -150 -100 -225
20
100 220 100 150 100 225
V V V V/C V/C
20
20
V OS --------------T IOS
Input Offset Voltage vs Temperature
ISL28176 ISL28276, ISL28476
0.7 0.5 -1 -2 -1.3 -4 -2 -5 -2 -2.5 0 90 80 90 80 115 115
0.4
Input Offset Current
ISL28176 ISL28276, ISL28476
1.3 2 1 4 2 5 2 2.5 5
nA nA nA nA V dB dB
0.25
IB
Input Bias Current
ISL28176 ISL28276, ISL28476
0.5
0.5
CMIR CMRR PSRR
Common-Mode Voltage Range Common-Mode Rejection Ratio Power Supply Rejection Ratio
Guaranteed by CMRR VCM = 0V to 5V V+ = 2.4V to 5V
3
FN6301.4 June 23, 2009
ISL28176, ISL28276, ISL28476
Electrical Specifications
V+ = 5V, V- = 0V,VCM = 2.5V, RL = Open, TA = +25C unless otherwise specified. Boldface limits apply over the operating temperature range, -40C to +125C, temperature data established by characterization. (Continued) DESCRIPTION Large Signal Voltage Gain CONDITIONS ISL28176 VO = 0.5V to 4.5V, RL = 100k ISL28276, ISL28476 VO = 0.5V to 4.5V, RL = 100k ISL28176, VO = 0.5V to 4.5V, RL = 1k ISL28276, ISL28476 VO = 0.5V to 4.5V, RL = 1k VOUT Maximum Output Voltage Swing ISL28176 Output low, RL = 100k Output low, RL = 1k Output high, RL = 100k Output high, RL = 1k Maximum Output Voltage Swing ISL28276, ISL28476 Output low, RL = 100k Output low, RL = 1k Output high, RL = 100k Output high, RL = 1k IS,ON Supply Current, Enabled ISL28176 ISL28276, All channels enabled. ISL28476, All channels enabled. IS,OFF ISC+ Supply Current, Disabled Short Circuit Sourcing Capability ISL28276IAZ (QSOP package only), All channels disabled. ISL28176 RL = 10 ISL28276, ISL28476 RL = 10 ISCShort Circuit Sinking Capability ISL28176 RL = 10 ISL28276, ISL28476 RL = 10 VSUPPLY VENH VENL IENH Supply Operating Range EN Pin High Level EN Pin Low Level EN Pin Input High Current V- to V+ ISL28276IAZ, (QSOP package only) ISL28276IAZ, (QSOP package only) VEN = V+ ISL28276IAZ, (QSOP package only) 0.7 18 18 29 23 17 15 24 19 2.4 2 0.8 1.3 1.5 4.990 4.97 4.800 4.750 35 30 4.994 4.992 4.750 4.7 MIN (Note 2) 200 200 350 350 TYP 500 550 MAX (Note 2) UNIT V/mV V/mV
PARAMETER AVOL
25 95 3 130 4.997 4.867 3 130 4.996 4.880 55 120 240 4 31 31 26 26 5 75 90 156 175 315 350 7 9 6 30 175 225 8 10 200 300
V/mV V/mV mV mV V V mV mV V V A A A A mA mA mA mA V V V A
4
FN6301.4 June 23, 2009
ISL28176, ISL28276, ISL28476
Electrical Specifications
V+ = 5V, V- = 0V,VCM = 2.5V, RL = Open, TA = +25C unless otherwise specified. Boldface limits apply over the operating temperature range, -40C to +125C, temperature data established by characterization. (Continued) DESCRIPTION EN Pin Input Low Current CONDITIONS VEN = VISL28276IAZ, (QSOP package only) MIN (Note 2) TYP 0 MAX (Note 2) 0.1 UNIT A
PARAMETER IENL
AC SPECIFICATONS GBW en Gain Bandwidth Product Input Noise Voltage Peak-to-Peak AV = 100, RF = 100k, RG = 1k, RL = 10k to VCM ISL28176 f = 0.1Hz to 10Hz ISL28276, ISL28476 f = 0.1Hz to 10Hz Input Noise Voltage Density ISL28176 fO = 1kHz ISL28276, ISL28476 fO = 1kHz in Input Noise Current Density ISL28176 fO = 1kHz ISL28276, ISL28476 fO = 1kHz CMRR @ 60Hz PSRR+ @ 120Hz Input Common Mode Rejection Ratio Power Supply Rejection Ratio, +V ISL28276, ISL28476 VCM = 1VP-P, RL = 10k to VCM ISL28176 V+, V- = 1.2V and 2.5V, VSOURCE = 1VP-P, RL = 10k to VCM ISL28276, ISL28476 V+, V- = 1.2V and 2.5V, VSOURCE = 1VP-P, RL = 10k to VCM PSRR- @ 120Hz Power Supply Rejection Ratio, -V ISL28176 V+, V- = 1.2V and 2.5V VSOURCE = 1VP-P, RL = 10k to VCM ISL28276, ISL28476 V+, V- = 1.2V and 2.5V VSOURCE = 1VP-P, RL = 10k to VCM TRANSIENT RESPONSE SR Slew Rate ISL28176 ISL28276, ISL28476 tEN Enable to Output Turn-on Delay Time, 10% EN to 10% VOUT, Enable to Output Turn-off Delay Time, 10% EN to 10% VOUT NOTE: 2. Parameters with MIN and/or MAX limits are 100% tested at +25C, unless otherwise specified. Temperature limits established by characterization and are not production tested.
0.065 0.10 0.09 0.13 0.17 0.3 0.20 0.25
400 1.5 2.5 28 30 0.16 0.12 78 90
kHz VP-P VP-P nV/Hz nV/Hz pA/Hz pA/Hz dB dB
105
dB
70
dB
73
dB
V/s V/s s
VEN = 5V to 0V, AV = -1, Rg = Rf = RL = 1k to VCM, ISL28276IAZ, (QSOP package only) VEN = 0V to 5V, AV = -1, Rg = Rf = RL = 1k to VCM, ISL28276IAZ, (QSOP package only)
2
0.1
s
5
FN6301.4 June 23, 2009
ISL28176, ISL28276, ISL28476 Typical Performance Curves
2 1 0 -1 GAIN (dB) -3 -4 -5 -6 -7 -8 -9 1k RL = 10k CL = 8.3pF AV = +1 VOUT = 10mVP-P 10k V+ = 5V GAIN (dB) -2 V+ = 2.5V +1 0 -1 -2 -3 -4 -5 V+ = 2V -6 -7 1M 10M -8 VOUT = 50mVP-P AV = 1 CL = 3pF RF = 0/RG = INF 1k 10k 100k FREQUENCY (Hz) 1M 5M V+, V- = 2.5V RL = 1k V+, V- = 2.5V RL = 10k V+, V- = 1.2V RL = 1k V+, V- = 1.2V RL = 10k
100k FREQUENCY (Hz)
FIGURE 1. ISL28176 GAIN vs FREQUENCY vs SUPPLY VOLTAGE
FIGURE 2. ISL28276, ISL28476 FREQUENCY RESPONSE vs SUPPLY VOLTAGE
45 40 35 30 GAIN (dB) 25 20 15 10 5 AV = 100 RL = 10k CL = 8.3pF VOUT = 10mVP-P RF = 221k RG = 2.23k 1k V+ = 5V V+ = 2.5V GAIN (dB)
45 40 35 30 25 20 15 V+ = 2V 10 5 100k 1M AV = 100 V+, V- = 2.5V RL = 10k CL = 2.7pF RF/RG = 99.02 V+, V- = 1.0V RF = 221k RG = 2.23k 1k 10k 100k FREQUENCY (Hz) 1M V+, V- = 1.25V
0 100
10k FREQUENCY (Hz)
0 100
FIGURE 3. ISL28176 GAIN vs FREQUENCY vs SUPPLY VOLTAGE
FIGURE 4. ISL28276, ISL28476 FREQUENCY RESPONSE vs SUPPLY VOLTAGE
120
80
100 80 PHASE 60 PHASE ()
200 150 100 50 PHASE ()
80
40
GAIN (dB)
GAIN
0
GAIN (dB)
40
40 0 20 0 -20 10 GAIN -50 -100 -150 1M
0 PHASE -40
-40
-80
-80
1
10
100
1k
10k
100k
1M
-120 10M
100
1k
10k
100k
FREQUENCY (Hz)
FREQUENCY (Hz)
FIGURE 5. AVOL vs FREQUENCY @ 100k LOAD
FIGURE 6. AVOL vs FREQUENCY @ 1k LOAD
6
FN6301.4 June 23, 2009
ISL28176, ISL28276, ISL28476 Typical Performance Curves
120 110 100 90 PSRR (dB) 80 70 60 50 40 30 20 10 0 10 PSRR V+, V- = 2.5V VSOURCE = 1VP-P RL = 100k AV = +1 100 1k 10k 100k 1M PSRR + CMRR (dB)
(Continued)
100 90 80 70 60 50 40 30 20 10 10 100 1k FREQUENCY (Hz) 10k 100k V+, V- = 2.5V VSOURCE = 1VP-P RL = 100k AV = +1
FREQUENCY (Hz)
FIGURE 7. PSRR vs FREQUENCY
FIGURE 8. CMRR vs FREQUENCY
1000 INPUT VOLTAGE NOISE (nVHz) VOLTAGE NOISE (nV/Hz) V+ = 5V RL = OPEN CL = 8.3pF AV = +1 100
1k
100
10 0.1
1
10 100 1k FREQUENCY (Hz)
10k
100k
10
1
10
100 1k FREQUENCY (Hz)
10k
100k
FIGURE 9. ISL28176 INPUT VOLTAGE NOISE DENSITY vs FREQUENCY
FIGURE 10. ISL28276, ISL28476 VOLTAGE NOISE vs FREQUENCY
10 INPUT CURRENT NOISE (pAHz) CURRENT NOISE (pA/Hz) 100k V+ = 5V RL = OPEN CL = 8.3pF AV = +1 1
10.0
1.0
0.1 0.1
1
10 100 1k FREQUENCY (Hz)
10k
0.1
1
10
100 1k FREQUENCY (Hz)
10k
100k
FIGURE 11. ISL28176 INPUT CURRENT NOISE DENSITY vs FREQUENCY
FIGURE 12. ISL28276, ISL28476 CURRENT NOISE vs FREQUENCY
7
FN6301.4 June 23, 2009
ISL28176, ISL28276, ISL28476 Typical Performance Curves
2.0 V+ = 5V R = OPEN 1.5 L CL = 8.3pF 1.0 Rg = 10, Rf = 10k AV = 1000 0.5 0 -0.5 -1.0 -1.5 -2.0 0 1 2 3 4 5 6 TIME (s) 7 8 9 10
(Continued)
1.5 VOLTAGE NOISE (0.5V/DIV) 1.0 0.5 0 -0.5 -1.0 -1.5
INPUT NOISE (V)
0
1
2
3
4
5
6
7
8
9
10
TIME (1s/DIV)
FIGURE 13. ISL28176 INPUT VOLTAGE NOISE 0.1Hz TO 10Hz
FIGURE 14. ISL28276, ISL28476 0.1Hz TO 10Hz INPUT VOLTAGE NOISE
12 10 SMALL SIGNAL (mV) 8 VOLTS (V) 6 4 2 0 -2 0 50 100 150 200 250 TIME (s) 300 350 400 V+, V- = 2.5V RL = 10k CL = 8.3pF Rg = Rf = 10k AV = 2 VOUT = 10mVP-P
2.56 2.54 2.52 2.50 2.48 2.46 2.44 2.42 0 2 4 6 8 10 12 14 16 18 20 TIME (s) V+ = 5VDC VOUT = 0.1VP-P RL = 500 AV = +1 VOUT VIN
FIGURE 15. ISL28176 SMALL SIGNAL TRANSIENT RESPONSE
FIGURE 16. ISL28276, ISL28476 SMALL SIGNAL TRANSIENT RESPONSE
2.5 2.0 1.5 LARGE SIGNAL (V) 1.0 V+, V- = 2.5V RL = 10k CL = 8.3pF Rg = 10k Rf = 30k AV = 4 VOUT = 4VP-P VOLTS (V) 0.5 0 -0.5 -1.0 -1.5 -2.0 -2.5 0 50 100 150 200 250 TIME (s) 300 350 400
4.0 VIN 3.5 3.0 2.5 2.0 VOUT 1.5 1.0 VIN V+ = 5VDC VOUT = 2VP-P RL = 1k AV = -1 VOUT
0
20
40 60 TIME (s)
80
100
FIGURE 17. ISL28176 LARGE SIGNAL TRANSIENT RESPONSE
FIGURE 18. ISL28276, ISL28476 LARGE SIGNAL TRANSIENT RESPONSE
8
FN6301.4 June 23, 2009
ISL28176, ISL28276, ISL28476 Typical Performance Curves
EN INPUT 1V/DIV
(Continued)
100
AV = -1 VIN = 200mVP-P V+ = 5V V- = 0V VOS (V)
80 60 40 20 0 -20 -40 -60 -80 V+ = 5V RL = OPEN RF = 100k, RG = 100 AV = +1000 -1 0 1 2 3 VCM (V) 4 5 6
0 0.1V/DIV VOUT
0 10s/DIV
-100
FIGURE 19. ISL28276 ENABLE TO OUTPUT DELAY TIME
FIGURE 20. INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE
100 80 60 40 I-BIAS (nA) 20 0 -20 -40 -60 -80 -100 -1 V+ = 5V RL = OPEN RF = 100k, RG = 100 AV = +1000 0 1 2 3 VCM (V) 4 5 6 SUPPLY CURRENT (A)
155 135 115 95 75 55 35 2.0
2.5
3.0 3.5 4.0 4.5 SUPPLY VOLTAGE (V)
5.0
5.5
FIGURE 21. INPUT OFFSET CURRENT vs COMMON-MODE INPUT VOLTAGE
FIGURE 22. ISL28276 SUPPLY CURRENT vs SUPPLY VOLTAGE
75 n = 12 SUPPLY CURRENT (A) 70 CURRENT (A) 65 MAX 60 MIN 55 MEDIAN 50 45 -40
150 N=7 100 50 0 MEDIAN -50 MIN MAX
-100 -150 -40
-20
0
20 40 60 80 TEMPERATURE (C)
100
120
-20
0
20 40 60 80 TEMPERATURE (C)
100
120
FIGURE 23. ISL28176 SUPPLY CURRENT vs TEMPERATURE VS = 2.5V ENABLED, RL = INF
FIGURE 24. ISL28276 SUPPLY CURRENT vs TEMPERATURE, V+,V- = 2.5V ENABLED, RL = INF
9
FN6301.4 June 23, 2009
ISL28176, ISL28276, ISL28476 Typical Performance Curves
320 N = 1000 300 CURRENT (A) 280 260 240 MIN 220 200 -40 MEDIAN 4.7 MAX CURRENT (A) 4.5 4.3 4.1 3.9 3.7 MIN -20 0 20 40 60 80 TEMPERATURE (C) 100 120 3.5 -40 -20 0 20 40 60 80 TEMPERATURE (C) 100 120 MAX MEDIAN
(Continued)
4.9 N=7
FIGURE 25. ISL28476 SUPPLY CURRENT vs TEMPERATURE, V+, V- = 2.5V ENABLED, RL = INF
FIGURE 26. ISL28276 SUPPLY CURRENT vs TEMPERATURE, V+, V- = 2.5V DISABLED, RL = INF
200 n = 12 150 MAX MEDIAN 50 MIN VOS (V) SO PACKAGE
200 n = 12 150 MAX MEDIAN 50
SO PACKAGE
VOS (V)
100
100
0
0 MIN
-50 -40
-20
0
20
40
60
80
100
120
-50 -40
-20
0
20
40
60
80
100
120
TEMPERATURE (C)
TEMPERATURE (C)
FIGURE 27. ISL28176 INPUT OFFSET VOLTAGE vs TEMPERATURE VS = 2.5V
FIGURE 28. ISL28176 INPUT OFFSET VOLTAGE vs TEMPERATURE VS = 1.2V
150 N=7 100 MAX 50 VOS (V) 0 -50 -100 -150 -40 MIN MEDIAN
150 100 50
VOS (V)
N=7 MAX
MEDIAN 0 -50 MIN
-100 -150 -40
-20
0
20
40
60
80
100
120
-20
0
20
40
60
80
100
120
TEMPERATURE (C)
TEMPERATURE (C)
FIGURE 29. ISL28276 VOS vs TEMPERATURE, VIN = 0V, V+,V- = 2.5V
FIGURE 30. ISL28276 VOS vs TEMPERATURE, VIN = 0V, V+,V- = 1.2V
10
FN6301.4 June 23, 2009
ISL28176, ISL28276, ISL28476 Typical Performance Curves
200 150 100 VOS (V) 50 0 -50 MIN -100 -150 -200 -40 -20 0 20 40 60 80 TEMPERATURE (C) 100 120 -100 -150 -200 -40 -20 0 20 40 60 80 TEMPERATURE (C) 100 120 MEDIAN VOS (V) MAX N = 1000
(Continued)
200 150 100 50 0 -50 MIN MEDIAN MAX N = 1000
FIGURE 31. ISL28476 VOS vs TEMPERATURE, VIN = 0V, V+,V- = 2.5V
FIGURE 32. ISL28476 VOS vs TEMPERATURE, VIN = 0V, V+,V- = 1.2V
2.5 n = 12 2.0 CURRENT (nA) CURRENT (nA) 1.5 MAX 1.0 0.5 0 MIN -0.5 -40 -20 0 20 40 60 80 100 120
3.0 n = 12 2.5 2.0 1.5 1.0 0.5 0 -0.5 -40 MEDIAN MIN -20 0 20 40 60 80 100 120 MAX
MEDIAN
TEMPERATURE (C)
TEMPERATURE (C)
FIGURE 33. ISL28176 IBIAS (+) vs TEMPERATURE VS = 2.5V
FIGURE 34. ISL28176 IBIAS (+) vs TEMPERATURE VS = 1.2V
2.5 2.0
N = 1000 MAX
3.0 2.5 2.0 IBIAS+ (nA) 1.5 1.0 0.5 0 -0.5 -1.0
N = 1000
1.5 IBIAS+ (nA) 1.0 MEDIAN 0.5 0 -0.5 -1.0 -1.5 -40 -20 0 20 40 60 80 TEMPERATURE (C) 100 120 MIN
MAX MEDIAN
MIN
-1.5 -40
-20
0
20 40 60 80 TEMPERATURE (C)
100
120
FIGURE 35. ISL28276 ISL28476 IBIAS (+) vs TEMPERATURE, V+,V- = 2.5V
FIGURE 36. ISL28276, ISL28476 IBIAS (+) vs TEMPERATURE, V+,V- = 1.2V
11
FN6301.4 June 23, 2009
ISL28176, ISL28276, ISL28476 Typical Performance Curves
2.5 n = 12 2.0 CURRENT (nA) 1.5 1.0 MEDIAN 0.5 0 MIN -0.5 -40 -20 0 20 40 60 80 100 120 MAX CURRENT (nA) 2.5 2.0 1.5 1.0 MEDIAN 0.5 0 -0.5 -40 -20 0 MIN 20 40 60 80 100 120 MAX
(Continued)
3.0 n = 12
TEMPERATURE (C)
TEMPERATURE (C)
FIGURE 37. ISL28176 IBIAS (-) vs TEMPERATURE VS = 2.5V
FIGURE 38. ISL28176 IBIAS (-) vs TEMPERATURE VS = 1.2V
2.5 2.0 1.5 1.0 IBIAS- (nA)
N = 1000 MAX
2.5 2.0 1.5 1.0 IBIAS- (nA) MEDIAN 0.5 0 -0.5 -1.0 -1.5
N = 1000
MAX
MEDIAN
0.5 0 -0.5 -1.0 -1.5 -2.0 -40 -20 0 20 40 60 80 TEMPERATURE (C) 100 120 MIN
MIN
-2.0 -40
-20
0
20 40 60 80 TEMPERATURE (C)
100
120
FIGURE 39. ISL28276 ISL28476 IBIAS (-) vs TEMPERATURE, V+, V- = 2.5V
FIGURE 40. ISL28276, ISL28476 IBIAS (-) vs TEMPERATURE, V+, V- = 1.2V
2.5 n = 12 2.0 CURRENT (nA) 1.5 IOS (nA) MAX 1.0 0.5 0 MIN -0.5 -40 -20 0 20 40 60 80 TEMPERATURE (C) 100 120
2.5 2.0 1.5 1.0 0.5
N = 1000
MAX
MEDIAN 0 -0.5 -1.0 MIN -1.5 -2.0 -40 -20 0 20 40 60 80 TEMPERATURE (C) 100 120
MEDIAN
FIGURE 41. ISL28176 INPUT OFFSET CURRENT vs TEMPERATURE, VS = 2.5V
FIGURE 42. ISL28276, ISL28476 IOS vs TEMPERATURE, V+, V- = 2.5V
12
FN6301.4 June 23, 2009
ISL28176, ISL28276, ISL28476 Typical Performance Curves
900 800 700 AVOL (V/mV) MEDIAN AVOL (V/mV) 600 500 400 300 200 100 0 -40 -20 0 20 40 60 80 100 120 450 MIN 350 -40 -20 0 20 40 60 80 TEMPERATURE (C) 100 120 850 750 650 550 MEDIAN n = 12 MAX
(Continued)
1050 N = 1000 950 MAX
MIN
TEMPERATURE (C)
FIGURE 43. ISL28176 AVOL, RL = 100k, VS 2.5V, VO = 2V
FIGURE 44. ISL28276, ISL28476 AVOL vs TEMPERATURE, V+, V- = 2.5V, RL = 100k
125 n = 12 120 115 110 105 100 95 -40 MAX CMRR (dB)
135 130 125
N = 1000
MAX
CMRR (dB)
120 115 110 105 100 MIN MEDIAN
MEDIAN MIN
95 80 100 120 90 -40 -20 0 20 40 60 80 100 120
-20
0
20
40
60
TEMPERATURE (C)
TEMPERATURE (C)
FIGURE 45. ISL28176 CMRR vs TEMPERATURE, VCM = +2.5V TO -2.5V
FIGURE 46. ISL28276, ISL28476 CMRR vs TEMPERATURE, VCM = +2.5V TO -2.5V V+, V- = 2.5V
140 135 130
n = 12
140 N = 1000 130 MAX PSRR (dB) 120 110 MIN 100 90 80 -40 MAX
PSRR (dB)
125 120 115 110 105 100 95 -40 -20 0
MEDIAN
MEDIAN
MIN 20 40 60 80 100 120
-20
0
20
40
60
80
100
120
TEMPERATURE (C)
TEMPERATURE (C)
FIGURE 47. ISL28176 PSRR vs TEMPERATURE, VS = 1.2V TO 2.5V
FIGURE 48. ISL28276, ISL28476 PSRR vs TEMPERATURE, V+, V- = 1.2V to 2.5V
13
FN6301.4 June 23, 2009
ISL28176, ISL28276, ISL28476 Typical Performance Curves
4.91 4.90 4.89 4.88 VOUT (V) 4.87 4.86 MIN 4.85 4.84 4.83 4.82 -40 -20 0 20 40 60 80 TEMPERATURE (C) 100 120 4.86 4.85 -40 VOUT (V) MEDIAN n = 12 MAX
(Continued)
4.91 N = 1000 4.90 MAX 4.89 4.88 4.87 MIN MEDIAN
-20
0
20 40 60 80 TEMPERATURE (C)
100
120
FIGURE 49. ISL28176 VOUT HIGH vs TEMPERATURE, V+, V- = 2.5V, RL= 1k
FIGURE 50. ISL28276, ISL28476 VOUT HIGH vs TEMPERATURE, V+,V- = 2.5V, RL= 1k
240 220 200 VOUT (mV) 180 160 140
n = 12
170 160 150 VOUT (mV) MAX MEDIAN 140 130 120 110 100 MIN MEDIAN MAX N = 1000
MIN 120 100 80 -40 -20 0 20 40 60 80 100 120
90 -40
-20
0
20
40
60
80
100
120
TEMPERATURE (C)
TEMPERATURE (C)
FIGURE 51. ISL28176 VOUT LOW vs TEMPERATURE, V+, V- = 2.5V, RL= 1k
FIGURE 52. ISL28276, ISL28476 VOUT LOW vs TEMPERATURE, V+, V- = 2.5V, RL= 1k
+ OUTPUT SHORT CIRCUIT CURRENT (mA)
- OUTPUT SHORT CIRCUIT CURRENT (mA)
39 N = 1000 37 35 33 31 29 27 25 -40 MIN MEDIAN MAX
-21 N = 1000 -23 MAX -25 -27 -29 -31 -33 -40 MIN MEDIAN
-20
0
20 40 60 80 TEMPERATURE (C)
100
120
-20
0
20 40 60 80 TEMPERATURE (C)
100
120
FIGURE 53. ISL28276, ISL28476 + OUTPUT SHORT CIRCUIT CURRENT vs TEMPERATURE, VIN = -2.55V, RL = 10, V+, V- = 2.5V
FIGURE 54. ISL28276, ISL28476 - OUTPUT SHORT CIRCUIT CURRENT vs TEMPERATURE, VIN = +2.55V, RL = 10, V+, V- = 2.5V
14
FN6301.4 June 23, 2009
ISL28176, ISL28276, ISL28476 Typical Performance Curves
0.23 n = 12 0.21 0.19 0.17 0.15 0.13 MIN 0.11 0.09 -40 + SLEW RATE (V/s) SLEW RATE (V/s) 0.22 0.20 MAX 0.18 0.16 0.14 0.12 0.10 -40 MIN MEDIAN
(Continued)
0.24 N = 1000
MAX MEDIAN
-20
0
20
40
60
80
100
120
-20
0
TEMPERATURE (C)
20 40 60 80 TEMPERATURE (C)
100
120
FIGURE 55. ISL28176 + SLEW RATE vs TEMPERATURE, VOUT = 1.5V, AV = +2
FIGURE 56. ISL28276, ISL28476 + SLEW RATE vs TEMPERATURE, VOUT = 1.5V, AV = +2
0.17 n = 12 0.16 CURRENT (pA) 0.15 0.14 0.13 MIN 0.12 0.11 0.10 -40 MEDIAN MAX - SLEW RATE (V/s)
0.24 N = 1000 0.22 0.20 MAX 0.18 0.16 MIN 0.14 0.12 -20 0 20 40 60 80 100 120 0.10 -40 MEDIAN
-20
0
TEMPERATURE (C)
20 40 60 80 TEMPERATURE (C)
100
120
FIGURE 57. ISL28176 - SLEW RATE vs TEMPERATURE, VOUT = 1.5V, AV = +2
FIGURE 58. ISL28276, ISL28476 - SLEW RATE vs TEMPERATURE, VOUT = 1.5V, AV = +2
Pin Descriptions
ISL28176 ISL28276 (8 LD SOIC) (8 LD SOIC) 6 2 3 7 1 2 3 8 5 6 7 1, 5, 8 ISL28276 (16 LD QSOP) 3 4 5 15 12 13 14 1, 2, 8, 9, 10, 16 ISL28476 PIN EQUIVALENT (16 LD QSOP) NAME CIRCUIT 1 2 3 4 5 6 7 8, 9 10 11 12 OUT_A IN-_A IN+_A V+ IN+_B IN-_B OUT_B NC OUT_C IN-_C IN+_C Circuit 3 Circuit 1 Circuit 1 Circuit 3 Circuit 1 Circuit 1 Circuit 4 Circuit 1 Circuit 1 Circuit 3 Amplifier A output Amplifier A inverting input Amplifier A non-inverting input Positive power supply Amplifier B non-inverting input Amplifier B inverting input Amplifier B output No internal connection Amplifier C output Amplifier C inverting input Amplifier B non-inverting input DESCRIPTION
15
FN6301.4 June 23, 2009
ISL28176, ISL28276, ISL28476 Pin Descriptions (Continued)
ISL28176 ISL28276 (8 LD SOIC) (8 LD SOIC) 4 4 ISL28276 (16 LD QSOP) 7 ISL28476 PIN EQUIVALENT (16 LD QSOP) NAME CIRCUIT 13 14 15 16 6 VIN+_D IN-_D OUT_D EN_A Circuit 4 Circuit 1 Circuit 1 Circuit 3 Circuit 2 DESCRIPTION Negative power supply Amplifier D non-inverting input Amplifier D inverting input Amplifier D output Amplifier A enable pin internal pull-down; Logic "1" selects the disabled state; Logic "0" selects the enabled state. Amplifier B enable pin with internal pull-down; Logic "1" selects the disabled state; Logic "0" selects the enabled state.
11
EN_B
Circuit 2
V+ INLOGIC PIN
V+ V+ OUT V-
V+
CAPACITIVELY COUPLED ESD CLAMP
IN+ V-
VCIRCUIT 2 CIRCUIT 3
VCIRCUIT 4
CIRCUIT 1
Applications Information
Introduction
The ISL28176, ISL28276 and ISL28476 are single, dual and quad BiCMOS rail-to-rail input, output (RRIO) micropower precision operational amplifiers. These devices are designed to operate from a single supply (2.4V to 5.0V) or dual supplies (1.2V to 2.5V) while drawing only 120A (ISL28276) of supply current. This combination of low power and precision performance makes these devices suitable for solar and battery power applications.
Input Protection
All input terminals have internal ESD protection diodes to the positive and negative supply rails, limiting the input voltage to within one diode beyond the supply rails. Both parts have additional back-to-back diodes across the input terminals. If overdriving the inputs is necessary, the external input current must never exceed 5mA. External series resistors may be used as an external protection to limit excessive external voltage and current from damaging the inputs.
Input Bias Current Compensation
The devices contain an input bias cancellation circuit which reduces the bias currents down to a typical of 500pA while maintaining an excellent bandwidth for a micro-power operational amplifier. The input stage transistors are still biased with adequate current for speed but the canceling circuit sinks most of the base current, leaving a small fraction as input bias current.
Rail-to-Rail Input
Many rail-to-rail input stages use two differential input pairs, a long-tail PNP (or PFET) and an NPN (or NFET). Severe penalties have to be paid for this circuit topology. As the input signal moves from one supply rail to another, the operational amplifier switches from one input pair to the other causing drastic changes in input offset voltage and an undesired change in magnitude and polarity of input offset current. The devices achieve rail-to-rail input without sacrificing important precision specifications and degrading distortion performance. The devices' input offset voltage exhibits a smooth behavior throughout the entire common-mode input range. The input bias current versus the common-mode voltage range gives us an undistorted behavior from typically down to the negative rail to 10% higher than the V+ rail (0.5V higher than V+ when V+ equals 5V).
Rail-to-Rail Output
A pair of complementary MOSFET devices are used to achieve the rail-to-rail output swing. The NMOS sinks current to swing the output in the negative direction. The PMOS sources current to swing the output in the positive direction. Both parts, with a 100k load, will typically swing to within 4mV of the positive supply rail and within 3mV of the negative supply rail.
16
FN6301.4 June 23, 2009
ISL28176, ISL28276, ISL28476
Enable/Disable Feature
The ISL28276 (QSOP package only) offers two EN pins (EN_A and EN_B) which disable the op amp when pulled up to at least 2.0V. In the disabled state (output in a high impedance state), the part consumes typically 4A. By disabling the part, multiple parts can be connected together as a MUX. The outputs are tied together in parallel and a channel can be selected by the EN pins. The loading effects of the feedback resistors of the disabled amplifier must be considered when multiple amplifier outputs are connected together. The EN pin also has an internal pull-down. If left open, the EN pin will pull to the negative rail and the device will be enabled by default.
HIGH IMPEDANCE INPUT IN V+
FIGURE 60. GUARD RING EXAMPLE FOR UNITY GAIN AMPLIFIER
Current Limiting
The ISL28176, ISL28276 and ISL28476 have no internal current-limiting circuitry. If the output is shorted, it is possible to exceed the Absolute Maximum Rating for output current or power dissipation, potentially resulting in the destruction of the device.
Using Only One Channel
The ISL28276 and ISL28476 are dual and quad channel op amps. If the application only requires one channel when using the ISL28276 or less than 4 channels when using the ISL28476, the user must configure the unused channel(s) to prevent them from oscillating. The unused channel(s) will oscillate if the input and output pins are floating. This will result in higher than expected supply currents and possible noise injection into the channel being used. The proper way to prevent this oscillation is to short the output to the negative input and ground the positive input (as shown in Figure 59).
+ 1/2 ISL28276 1/4 ISL28476
Power Dissipation
It is possible to exceed the +150C maximum junction temperatures under certain load and power-supply conditions. It is therefore important to calculate the maximum junction temperature (TJMAX) for all applications to determine if power supply voltages, load conditions, or package type need to be modified to remain in the safe operating area. These parameters are related as follows:
T JMAX = T MAX + ( JA xPD MAXTOTAL ) (EQ. 1)
where: * PDMAXTOTAL is the sum of the maximum power dissipation of each amplifier in the package (PDMAX) * PDMAX for each amplifier can be calculated as follows:
V OUTMAX PD MAX = 2*V S x I SMAX + ( V S - V OUTMAX ) x --------------------------R (EQ. 2)
L
FIGURE 59. PREVENTING OSCILLATIONS IN UNUSED CHANNELS
Proper Layout Maximizes Performance
To achieve the maximum performance of the high input impedance and low offset voltage, care should be taken in the circuit board layout. The PC board surface must remain clean and free of moisture to avoid leakage currents between adjacent traces. Surface coating of the circuit board will reduce surface moisture and provide a humidity barrier, reducing parasitic resistance on the board. When input leakage current is a concern, the use of guard rings around the amplifier inputs will further reduce leakage currents. Figure 60 shows a guard ring example for a unity gain amplifier that uses the low impedance amplifier output at the same voltage as the high impedance input to eliminate surface leakage. The guard ring does not need to be a specific width, but it should form a continuous loop around both inputs. For further reduction of leakage currents, components can be mounted to the PC board using Teflon standoff insulators.
where: * TMAX = Maximum ambient temperature * JA = Thermal resistance of the package * PDMAX = Maximum power dissipation of 1 amplifier * VS = Supply voltage (Magnitude of V+ and V-) * IMAX = Maximum supply current of 1 amplifier * VOUTMAX = Maximum output voltage swing of the application * RL = Load resistance
17
FN6301.4 June 23, 2009
ISL28176, ISL28276, ISL28476 Small Outline Package Family (SO)
A D N (N/2)+1 h X 45
A E E1 PIN #1 I.D. MARK c SEE DETAIL "X"
1 B
(N/2) L1
0.010 M C A B e C H A2 GAUGE PLANE A1 0.004 C 0.010 M C A B b DETAIL X
SEATING PLANE L 4 4
0.010
MDP0027
SMALL OUTLINE PACKAGE FAMILY (SO) INCHES SYMBOL A A1 A2 b c D E E1 e L L1 h N NOTES: 1. Plastic or metal protrusions of 0.006" maximum per side are not included. 2. Plastic interlead protrusions of 0.010" maximum per side are not included. 3. Dimensions "D" and "E1" are measured at Datum Plane "H". 4. Dimensioning and tolerancing per ASME Y14.5M-1994 SO-8 0.068 0.006 0.057 0.017 0.009 0.193 0.236 0.154 0.050 0.025 0.041 0.013 8 SO-14 0.068 0.006 0.057 0.017 0.009 0.341 0.236 0.154 0.050 0.025 0.041 0.013 14 SO16 (0.150") 0.068 0.006 0.057 0.017 0.009 0.390 0.236 0.154 0.050 0.025 0.041 0.013 16 SO16 (0.300") (SOL-16) 0.104 0.007 0.092 0.017 0.011 0.406 0.406 0.295 0.050 0.030 0.056 0.020 16 SO20 (SOL-20) 0.104 0.007 0.092 0.017 0.011 0.504 0.406 0.295 0.050 0.030 0.056 0.020 20 SO24 (SOL-24) 0.104 0.007 0.092 0.017 0.011 0.606 0.406 0.295 0.050 0.030 0.056 0.020 24 SO28 (SOL-28) 0.104 0.007 0.092 0.017 0.011 0.704 0.406 0.295 0.050 0.030 0.056 0.020 28 TOLERANCE MAX 0.003 0.002 0.003 0.001 0.004 0.008 0.004 Basic 0.009 Basic Reference Reference NOTES 1, 3 2, 3 Rev. M 2/07
18
FN6301.4 June 23, 2009
ISL28176, ISL28276, ISL28476 Quarter Size Outline Plastic Packages Family (QSOP)
A D N (N/2)+1
MDP0040
QUARTER SIZE OUTLINE PLASTIC PACKAGES FAMILY INCHES SYMBOL QSOP16 QSOP24 QSOP28 TOLERANCE NOTES
PIN #1 I.D. MARK
A A1 A2 b
0.068 0.006 0.056 0.010 0.008 0.193 0.236 0.154 0.025 0.025 0.041 16
0.068 0.006 0.056 0.010 0.008 0.341 0.236 0.154 0.025 0.025 0.041 24
0.068 0.006 0.056 0.010 0.008 0.390 0.236 0.154 0.025 0.025 0.041 28
Max. 0.002 0.004 0.002 0.001 0.004 0.008 0.004 Basic 0.009 Basic Reference
1, 3 2, 3 Rev. F 2/07
E
E1
1 B 0.010 CAB
(N/2)
c D E
e C SEATING PLANE 0.004 C 0.007 CAB b
H
E1 e L L1 N
L1 A c SEE DETAIL "X"
NOTES: 1. Plastic or metal protrusions of 0.006" maximum per side are not included. 2. Plastic interlead protrusions of 0.010" maximum per side are not included. 3. Dimensions "D" and "E1" are measured at Datum Plane "H". 4. Dimensioning and tolerancing per ASME Y14.5M-1994.
0.010 A2 GAUGE PLANE L 44 DETAIL X
A1
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com 19
FN6301.4 June 23, 2009


▲Up To Search▲   

 
Price & Availability of ISL28176

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X